Deploying next-generation sequencing in a hospital setting
نویسندگان
چکیده
Personalized medicine is the ability to tailor healthcare decisions based on an individual’s unique characteristics (genetics, demographic information, healthcare experience, environment and social factors) to more accurately diagnose the individual’s disease, predict its outcomes, and select treatments that increase the chances of a successful outcome and reduce possible adverse reactions. Moreover, it is the ability to predict an individual’s susceptibility to diseases with the goal of taking measures to prevent or mitigate the extent to which an individual will experience a disease. The promise of personalized medicine in healthcare delivery includes: • avoiding the cost of a drug or therapy with little chance of success for each patient • avoiding exposing patients to side-effects from the wrong treatment • avoiding increased disease burden from delays in finding the right treatment • being able to act preventatively in cases where we can predict disease susceptibility, to delay onset and/or progression. These changes in healthcare delivery promise improved patient outcomes as well as reduced healthcare and societal costs of managing disease. A key component in personalized medicine is the emergence of whole-genome-scale sequencing as a platform to identify gene variants. Many challenges exist, however, to the use of large-scale sequencing in disease gene discovery and the efficacious application of such knowledge to health benefit. Leveraging upon the Ontario Government’s CAD $7 million committed investment to build a clinical genomics operational framework for personalized healthcare at Mount Sinai Hospital, our project is developing a portfolio of computational tools and methods to enable acquisition, analysis, interpretation and reporting of high-throughput sequence data and the ethical, economic, psychosocial and knowledge synthesis support needed to move deep sequencing datasets and their findings into clinical practice. The challenges to moving next-generation sequencing (NGS) into the hospital setting are both technical and regulatory. Since introduced into the research community in 2007, broad use of NGS has been greatly enabled by development of sophisticated informatics and analytic tools. While such tools have reduced many of the barriers to clinical application of NGS, the investment needed to bring NGS into medical practice remains significant, the scale of IT required being unprecedented at most hospitals. In this context, hospitals are, to some extent, at a similar place to that of research institutes when NGS first emerged. Some of the IT barriers to clinical use of NGS have been bypassed by the expertise in NGS data management developed at genome centers and across the research community. However, even this wealth of experience does not fully address the road blocks inherent to integrating NGS information into existing health workflows and IT systems, and the added challenges posed by the regulatory controls in place across the health system. This talk will describe strategies our group is using to overcome these hurdles and thereby expedite clinical integration of NGS capability and its translation to delivery of personalized healthcare.
منابع مشابه
Genome Wide Association Studies, Next Generation Sequencing and Their Application in Animal Breeding and Genetics: A Review
Recently genetic studies have been revolutionized by next generation sequencing (NGS) technology, and it is expected that the use of this technology will largely eliminate defects in the methods of association studies. The NGS technology is becoming the premier tool in genetics. However, at the moment the use of this method is limited especially in the livestock due to high cost and computation...
متن کاملI-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies
The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...
متن کاملStrategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملNext Generation Sequencing and its Application in the Study of Microbiome in Plant Diseases Suppressive Soils
Progress in next-generation sequencing has played a significant role in ecological studies of microbial populations. These advances have led to a rapid evaluation in metagenomics studies (analysis of DNA of microbial communities without the need to culture). Many statistical and computational tools and metagenomics databases have led to the discovery of huge amounts of data. In this research, i...
متن کاملMolecular Testing in Microbiology
There are significant challenges associated with qualitative and quantitative nucleic acid tests performed in diagnostic laboratories. The development of internationally available certified reference materials which can be traced to reference measurements will contribute to a better understanding of the performance characteristics of nucleic acid tests and enhance reliability and comparability ...
متن کاملStrategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2012